Back to Search Start Over

Catalytic microgelators for decoupled control of gelation rate and rigidity of the biological gels.

Authors :
Hong YT
Bregante DT
Lee JC
Seo Y
Kim DH
Lee YJ
Schook LB
Jeon H
Sung HJ
Flaherty DW
Rogers SA
Kong H
Source :
Journal of controlled release : official journal of the Controlled Release Society [J Control Release] 2020 Jan 10; Vol. 317, pp. 166-180. Date of Electronic Publication: 2019 Nov 11.
Publication Year :
2020

Abstract

Fibrin gels have been extensively used for three-dimensional cell culture, bleeding control, and molecular and cell therapies because the fibrous networks facilitate biomolecular and cell transport. However, a small window for gelation makes it difficult to handle the gels for desired preparation and transport. Several methods developed to control gelation rates often alter the microstructure, thereby affecting the mechanical response. We hypothesized that a particle designed to discharge thrombin cargos in response to an external stimulus, such as H <subscript>2</subscript> O <subscript>2</subscript> , would provide control of the gelation rate over a broad range while strengthening the gel. We examined this hypothesis by assembling poly (lactic-co-glycolic acid) (PLGA) particles loaded with thrombin and MnO <subscript>2</subscript> nanosheets that decompose H <subscript>2</subscript> O <subscript>2</subscript> to O <subscript>2</subscript> gas. The resulting particles named as catalytic microgelator were mixed with fibrinogen solution or blood containing 0.2mM H <subscript>2</subscript> O <subscript>2</subscript> . Due to the increased internal pressure, these particles released a 3-fold larger mass of thrombin than PLGA particles loaded only with thrombin. As a consequence, catalytic microgelators increased the gelation time by one order of magnitude and the elastic modulus by a factor of two compared with the fibrin gel formed by directly mixing fibrinogen and thrombin in solution. These catalytic microgelators also served to clot blood, unlike PLGA particles loaded with thrombin. The resulting blood clot was also more rigid than the blood clot formed by thrombin solution. The results of this study would serve as a new paradigm in controlling gelation kinetics of pre-gel solution and mechanical properties of the post-gel matrix.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4995
Volume :
317
Database :
MEDLINE
Journal :
Journal of controlled release : official journal of the Controlled Release Society
Publication Type :
Academic Journal
Accession number :
31726076
Full Text :
https://doi.org/10.1016/j.jconrel.2019.10.029