Back to Search Start Over

Radio-biologically motivated modeling of radiation risks of mortality from ischemic heart diseases in the Canadian fluoroscopy cohort study.

Authors :
Schöllnberger H
Kaiser JC
Eidemüller M
Zablotska LB
Source :
Radiation and environmental biophysics [Radiat Environ Biophys] 2020 Mar; Vol. 59 (1), pp. 63-78. Date of Electronic Publication: 2019 Nov 28.
Publication Year :
2020

Abstract

Recent analyses of the Canadian fluoroscopy cohort study reported significantly increased radiation risks of mortality from ischemic heart diseases (IHD) with a linear dose-response adjusted for dose fractionation. This cohort includes 63,707 tuberculosis patients from Canada who were exposed to low-to-moderate dose fractionated X-rays in 1930s-1950s and were followed-up for death from non-cancer causes during 1950-1987. In the current analysis, we scrutinized the assumption of linearity by analyzing a series of radio-biologically motivated nonlinear dose-response models to get a better understanding of the impact of radiation damage on IHD. The models were weighted according to their quality of fit and were then mathematically superposed applying the multi-model inference (MMI) technique. Our results indicated an essentially linear dose-response relationship for IHD mortality at low and medium doses and a supra-linear relationship at higher doses (> 1.5 Gy). At 5 Gy, the estimated radiation risks were fivefold higher compared to the linear no-threshold (LNT) model. This is the largest study of patients exposed to fractionated low-to-moderate doses of radiation. Our analyses confirm previously reported significantly increased radiation risks of IHD from doses similar to those from diagnostic radiation procedures.

Details

Language :
English
ISSN :
1432-2099
Volume :
59
Issue :
1
Database :
MEDLINE
Journal :
Radiation and environmental biophysics
Publication Type :
Academic Journal
Accession number :
31781840
Full Text :
https://doi.org/10.1007/s00411-019-00819-9