Back to Search
Start Over
Minocycline induces apoptosis of photoreceptor cells by regulating ER stress.
- Source :
-
Experimental eye research [Exp Eye Res] 2020 Jan; Vol. 190, pp. 107887. Date of Electronic Publication: 2019 Dec 01. - Publication Year :
- 2020
-
Abstract
- Our previous work reported that minocycline induced inhibition of microglial activation aggravated visual injury in an oxygen induced retinopathy animal model. We hypothesized that minocycline might have aggravated injury to the photoreceptor. Some patients who use minocycline to treat acne complain of visual impairment; however, no studies have addressed minocycline toxicity to photoreceptors. Here, we identified mechanistic effect of minocycline on photoreceptor apoptosis. The results of Cell Counting Kit-8 and Ki67 staining demonstrated that minocycline inhibited the proliferation of 661W cells, and flow cytometry and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) demonstrated that minocycline promoted cell apoptosis. Additionally, minocycline administration activated signaling associated with endoplasmic reticulum stress, the pancreatic ER kinase-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-CCAAT/enhancer-binding protein homologous protein (CHOP) cascade, which represented the key mechanism underlying the initiation of apoptosis. Moreover, we observed downregulated nuclear factor erythroid 2-related factor 2 (Nrf2) after administration of minocycline for 12 h (12 hours) and Nrf2 transferred from nuclear to cytoplasm after 6 h, indicating that Nrf2 in nuclear may alleviated the pro-apoptotic effect of minocycline on photoreceptor cells. Upregulating Nrf2 inhibited apoptosis in minocycline treated 661W cells. These represent the first data demonstrating minocycline toxicity to photoreceptors via its pro-apoptotic effects through the regulation of ER stress pathways.<br /> (Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Subjects :
- Animals
Blotting, Western
Cell Line
Cell Proliferation drug effects
Electroretinography
Endoplasmic Reticulum Stress physiology
Eukaryotic Initiation Factor-2 metabolism
Flow Cytometry
Fluorescent Antibody Technique, Indirect
In Situ Nick-End Labeling
Intravitreal Injections
Mice
Mice, Inbred C57BL
Mice, Transgenic
NF-E2-Related Factor 2 metabolism
Photoreceptor Cells, Vertebrate metabolism
Photoreceptor Cells, Vertebrate pathology
Real-Time Polymerase Chain Reaction
eIF-2 Kinase metabolism
Anti-Bacterial Agents toxicity
Apoptosis drug effects
Endoplasmic Reticulum Stress drug effects
Minocycline toxicity
Photoreceptor Cells, Vertebrate drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1096-0007
- Volume :
- 190
- Database :
- MEDLINE
- Journal :
- Experimental eye research
- Publication Type :
- Academic Journal
- Accession number :
- 31801685
- Full Text :
- https://doi.org/10.1016/j.exer.2019.107887