Back to Search Start Over

Cooperative Blockade of PKCα and JAK2 Drives Apoptosis in Glioblastoma.

Authors :
Wong RA
Luo X
Lu M
An Z
Haas-Kogan DA
Phillips JJ
Shokat KM
Weiss WA
Fan QW
Source :
Cancer research [Cancer Res] 2020 Feb 15; Vol. 80 (4), pp. 709-718. Date of Electronic Publication: 2019 Dec 05.
Publication Year :
2020

Abstract

The mTOR signaling is dysregulated prominently in human cancers including glioblastoma, suggesting mTOR as a robust target for therapy. Inhibitors of mTOR have had limited success clinically, however, in part because their mechanism of action is cytostatic rather than cytotoxic. Here, we tested three distinct mTOR kinase inhibitors (TORKi) PP242, KU-0063794, and sapanisertib against glioblastoma cells. All agents similarly decreased proliferation of glioblastoma cells, whereas PP242 uniquely induced apoptosis. Apoptosis induced by PP242 resulted from off-target cooperative inhibition of JAK2 and protein kinase C alpha (PKCα). Induction of apoptosis was also decreased by additional on-target inhibition of mTOR, due to induction of autophagy. As EGFR inhibitors can block PKCα, EGFR inhibitors erlotinib and osimertinib were tested separately in combination with the JAK2 inhibitor AZD1480. Combination therapy induced apoptosis of glioblastoma tumors in both flank and in patient-derived orthotopic xenograft models, providing a preclinical rationale to test analogous combinations in patients. SIGNIFICANCE: These findings identify PKCα and JAK2 as targets that drive apoptosis in glioblastoma, potentially representing a clinically translatable approach for glioblastoma.<br /> (©2019 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1538-7445
Volume :
80
Issue :
4
Database :
MEDLINE
Journal :
Cancer research
Publication Type :
Academic Journal
Accession number :
31806641
Full Text :
https://doi.org/10.1158/0008-5472.CAN-18-2808