Back to Search Start Over

HIPK2 overexpression relieves hypoxia/reoxygenation-induced apoptosis and oxidative damage of cardiomyocytes through enhancement of the Nrf2/ARE signaling pathway.

Authors :
Dang X
Zhang R
Peng Z
Qin Y
Sun J
Niu Z
Pei H
Source :
Chemico-biological interactions [Chem Biol Interact] 2020 Jan 25; Vol. 316, pp. 108922. Date of Electronic Publication: 2019 Dec 16.
Publication Year :
2020

Abstract

Homeodomain interacting protein kinase-2 (HIPK2) has emerged as a crucial stress-responsive kinase that plays a critical role in regulating cell survival and apoptosis. However, whether HIPK2 participates in regulating cardiomyocyte survival during myocardial ischemia/reperfusion injury remains unclear. Here, we investigated the regulatory effect of HIPK2 on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and its potential underlying molecular mechanism. We found that HIPK2 expression was induced in response to H/R exposure. HIPK2 depletion by small interfering RNA (siRNA)-mediated gene silencing significantly decreased the viability and exacerbated H/R-induced apoptosis and reactive oxygen species (ROS) production in cardiomyocytes. Comparatively, HIPK2 overexpression effectively rescued H/R-impaired viability and repressed H/R-induced apoptosis and ROS production in cardiomyocytes. HIPK2 overexpression significantly increased the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and enhanced Nrf2-mediated transcriptional activity. Moreover, HIPK2 overexpression significantly increased the transcription of Nrf2/ARE target genes. Additionally, Nrf2 inhibition partially reversed the HIPK2-mediated protective effect. Overall, these results demonstrate that HIPK2 overexpression protects cardiomyocytes from H/R-induced injury by enhancing Nrf2/ARE antioxidant signaling, data that suggest HIPK2 is a potential target for cardioprotection.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-7786
Volume :
316
Database :
MEDLINE
Journal :
Chemico-biological interactions
Publication Type :
Academic Journal
Accession number :
31837296
Full Text :
https://doi.org/10.1016/j.cbi.2019.108922