Back to Search Start Over

Mild metabolic stress is sufficient to disturb the formation of pyramidal cell ensembles during gamma oscillations.

Authors :
Elzoheiry S
Lewen A
Schneider J
Both M
Hefter D
Boffi JC
Hollnagel JO
Kann O
Source :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism [J Cereb Blood Flow Metab] 2020 Dec; Vol. 40 (12), pp. 2401-2415. Date of Electronic Publication: 2019 Dec 16.
Publication Year :
2020

Abstract

Disturbances of cognitive functions occur rapidly during acute metabolic stress. However, the underlying mechanisms are not fully understood. Cortical gamma oscillations (30-100 Hz) emerging from precise synaptic transmission between excitatory principal neurons and inhibitory interneurons, such as fast-spiking GABAergic basket cells, are associated with higher brain functions, like sensory perception, selective attention and memory formation. We investigated the alterations of cholinergic gamma oscillations at the level of neuronal ensembles in the CA3 region of rat hippocampal slice cultures. We combined electrophysiology, calcium imaging (CamKII.GCaMP6f) and mild metabolic stress that was induced by rotenone, a lipophilic and highly selective inhibitor of complex I in the respiratory chain of mitochondria. The detected pyramidal cell ensembles showing repetitive patterns of activity were highly sensitive to mild metabolic stress. Whereas such synchronised multicellular activity diminished, the overall activity of individual pyramidal cells was unaffected. Additionally, mild metabolic stress had no effect on the rate of action potential generation in fast-spiking neural units. However, the partial disinhibition of slow-spiking neural units suggests that disturbances of ensemble formation likely result from alterations in synaptic inhibition. Our study bridges disturbances on the (multi-)cellular and network level to putative cognitive impairment on the system level.

Details

Language :
English
ISSN :
1559-7016
Volume :
40
Issue :
12
Database :
MEDLINE
Journal :
Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Publication Type :
Academic Journal
Accession number :
31842665
Full Text :
https://doi.org/10.1177/0271678X19892657