Back to Search
Start Over
Finite Element Breast Simulation for Sonography Image Registration.
- Source :
-
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2019 Jul; Vol. 2019, pp. 7100-7106. - Publication Year :
- 2019
-
Abstract
- In case of female breast cancer, a breast conserving excision is often necessary. For this purpose, information from multiple medical imaging techniques have to be combined. Sonography imaging is essential for dense breast tissue and the only medical imaging technique available during surgery. During sonography of the outer breast quadrants the woman is usually in contralateral posterior oblique position, being in supine orientation while holding her ipsilateral arm over the head. Thus, these images cannot be directly registered with MRI or mammography images because these imaging technologies are performed in other patient positions with hands on the side of the body. Thus, we present a novel Finite Element approach how to enable a sonography image registration by showing the first time how to transfer the supine position with the arm straight on side into a supine position with the ipsilateral arm over the head which can be used to include information from MRI or mammography images. This approach is shown and validated with 3D scanner breast surface data as proof of concept. When comparing the simulation result with a 3D surface scan in supine orientation with the arm over the head, a mean surface distance error of 1.57 mm is achieved.
Details
- Language :
- English
- ISSN :
- 2694-0604
- Volume :
- 2019
- Database :
- MEDLINE
- Journal :
- Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
- Publication Type :
- Academic Journal
- Accession number :
- 31947473
- Full Text :
- https://doi.org/10.1109/EMBC.2019.8857282