Back to Search Start Over

The crowding dynamics of the motor protein kinesin-II.

Authors :
Kushwaha VS
Acar S
Miedema DM
Denisov DV
Schall P
Peterman EJG
Source :
PloS one [PLoS One] 2020 Feb 13; Vol. 15 (2), pp. e0228930. Date of Electronic Publication: 2020 Feb 13 (Print Publication: 2020).
Publication Year :
2020

Abstract

Intraflagellar transport (IFT) in C. elegans chemosensory cilia is an example of functional coordination and cooperation of two motor proteins with distinct motility properties operating together in large groups to transport cargoes: a fast and processive homodimeric kinesin-2, OSM-3, and a slow and less processive heterotrimeric kinesin-2, kinesin-II. To study the mechanism of the collective dynamics of kinesin-II of C. elegans cilia in an in vitro system, we used Total Internal Reflection Fluorescence microscopy to image the motility of truncated, heterodimeric kinesin-II constructs at high motor densities. Using an analysis technique based on correlation of the fluorescence intensities, we extracted quantitative motor parameters, such as motor density, velocity and average run length, from the image. Our experiments and analyses show that kinesin-II motility parameters are far less affected by (self) crowding than OSM-3. Our observations are supported by numerical calculations based on the TASEP-LK model (Totally Asymmetric Simple Exclusion Process-Langmuir Kinetics). From a comparison of data and modelling of OSM-3 and kinesin-II, a general picture emerges of the collective dynamics of the kinesin motors driving IFT in C. elegans chemosensory cilia and the way the motors deal with crowding.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
15
Issue :
2
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
32053680
Full Text :
https://doi.org/10.1371/journal.pone.0228930