Back to Search Start Over

Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas.

Authors :
Moyo MB
Parker JB
Chakravarti D
Source :
Nature communications [Nat Commun] 2020 Feb 24; Vol. 11 (1), pp. 1019. Date of Electronic Publication: 2020 Feb 24.
Publication Year :
2020

Abstract

Uterine leiomyomas (fibroids) are a major source of gynecologic morbidity in reproductive age women and are characterized by the excessive deposition of a disorganized extracellular matrix, resulting in rigid benign tumors. Although down regulation of the transcription factor AP-1 is highly prevalent in leiomyomas, the functional consequence of AP-1 loss on gene transcription in uterine fibroids remains poorly understood. Using high-resolution ChIP-sequencing, promoter capture Hi-C, and RNA-sequencing of matched normal and leiomyoma tissues, here we show that modified enhancer architecture is a major driver of transcriptional dysregulation in MED12 mutant uterine leiomyomas. Furthermore, modifications in enhancer architecture are driven by the depletion of AP-1 occupancy on chromatin. Silencing of AP-1 subunits in primary myometrium cells leads to transcriptional dysregulation of extracellular matrix associated genes and partly recapitulates transcriptional and epigenetic changes observed in leiomyomas. These findings establish AP-1 driven aberrant enhancer regulation as an important mechanism of leiomyoma disease pathogenesis.

Details

Language :
English
ISSN :
2041-1723
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
32094355
Full Text :
https://doi.org/10.1038/s41467-020-14701-6