Back to Search Start Over

Selenium Yeast Alleviates Ochratoxin A-Induced Hepatotoxicity via Modulation of the PI3K/AKT and Nrf2/Keap1 Signaling Pathways in Chickens.

Authors :
Li P
Li K
Zou C
Tong C
Sun L
Cao Z
Yang S
Lyu Q
Source :
Toxins [Toxins (Basel)] 2020 Feb 25; Vol. 12 (3). Date of Electronic Publication: 2020 Feb 25.
Publication Year :
2020

Abstract

The aim of this study was to investigate the protective effects of selenium yeast (Se-Y) against hepatotoxicity induced by ochratoxin A (OTA). The OTA-induced liver injury model was established in chickens by daily oral gavage of 50 µg/kg OTA for 21 days. Serum biochemistry analysis, antioxidant analysis, as well as the qRT-PCR and Western blot (WB) analyses were then used to evaluate oxidative damage and apoptosis in chicken liver tissue. The results showed that Se-Y significantly increased liver coefficient induced by OTA ( P < 0.05). OTA + Se-Y treated group revealed that Se-Y reduced the OTA-induced increase in glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and malonaldehyde (MDA) content, and reversed the decrease in antioxidant capacity (T-AOC), glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) ( P < 0.05). In this study, we found that OTA is involved in the mRNA expression levels about Nrf2/Keap1 and PI3K/AKT signaling pathways, such as oxidative stress-related genes (Nrf2, GSH-Px, GLRX2 and Keap1) and apoptosis-related genes (Bax, Caspase3, P53, AKT, PI3K and Bcl-2). Besides, significant downregulations of protein expression of HO-1, MnSOD, Nrf2 and Bcl-2, as well as a significant upregulation of Caspase3 and Bax levels were observed after contaminated with OTA ( P < 0.05). Notably, OTA-induced apoptosis and oxidative damage in the liver of chickens were reverted back to normal level in the OTA + Se-Y group. Our findings indicate that pretreatment with Se-Y effectively ameliorates OTA-induced hepatotoxicity.

Details

Language :
English
ISSN :
2072-6651
Volume :
12
Issue :
3
Database :
MEDLINE
Journal :
Toxins
Publication Type :
Academic Journal
Accession number :
32106596
Full Text :
https://doi.org/10.3390/toxins12030143