Back to Search
Start Over
Hippocampus-avoidance whole-brain radiation therapy with a simultaneous integrated boost for multiple brain metastases.
- Source :
-
Cancer [Cancer] 2020 Jun 01; Vol. 126 (11), pp. 2694-2703. Date of Electronic Publication: 2020 Mar 06. - Publication Year :
- 2020
-
Abstract
- Background: The current study was aimed at investigating the feasibility of hippocampus-avoidance whole-brain radiation therapy with a simultaneous integrated boost (HA-WBRT+SIB) for metastases and at assessing tumor control in comparison with conventional whole-brain radiation therapy (WBRT) in patients with multiple brain metastases.<br />Methods: Between August 2012 and December 2016, 66 patients were treated within a monocentric feasibility trial with HA-WBRT+SIB: hippocampus-avoidance WBRT (30 Gy in 12 fractions, dose to 98% of the hippocampal volume ≤ 9 Gy) and a simultaneous integrated boost (51 or 42 Gy in 12 fractions) for metastases/resection cavities. Intracranial tumor control, hippocampal failure, and survival were subsequently compared with a retrospective cohort treated with WBRT via propensity score matching analysis.<br />Results: After 1:1 propensity score matching, there were 62 HA-WBRT+SIB patients and 62 WBRT patients. Local tumor control (LTC) of existing metastases was significantly higher after HA-WBRT+SIB (98% vs 82% at 1 year; P = .007), whereas distant intracranial tumor control was significantly higher after WBRT (82% vs 69% at 1 year; P = .016); this corresponded to higher biologically effective doses. Intracranial progression-free survival (PFS; 13.5 vs 6.4 months; P = .03) and overall survival (9.9 vs 6.2 months; P = .001) were significantly better in the HA-WBRT+SIB cohort. Four patients (6.5%) developed hippocampal metastases after hippocampus avoidance. The neurologic death rate after HA-WBRT+SIB was 27.4%.<br />Conclusions: HA-WBRT+SIB can be an efficient therapeutic option for patients with multiple brain metastases and is associated with improved LTC of existing metastases, higher intracranial PFS, a reduction of the neurologic death rate, and an acceptable risk of radiation necrosis. The therapy has the potential to prevent neurocognitive adverse effects, which will be further evaluated in the multicenter, phase 2 HIPPORAD trial.<br /> (© 2020 The Authors. Cancer published by Wiley Periodicals LLC on behalf of American Cancer Society.)
Details
- Language :
- English
- ISSN :
- 1097-0142
- Volume :
- 126
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- Cancer
- Publication Type :
- Academic Journal
- Accession number :
- 32142171
- Full Text :
- https://doi.org/10.1002/cncr.32787