Back to Search
Start Over
Granular computing-neural network model for prediction of longitudinal dispersion coefficients in rivers.
- Source :
-
Water science and technology : a journal of the International Association on Water Pollution Research [Water Sci Technol] 2019 Nov; Vol. 80 (10), pp. 1880-1892. - Publication Year :
- 2019
-
Abstract
- Successful application of one-dimensional advection-dispersion models in rivers depends on the accuracy of the longitudinal dispersion coefficient (LDC). In this regards, this study aims to introduce an appropriate approach to estimate LDC in natural rivers that is based on a hybrid method of granular computing (GRC) and an artificial neural network (ANN) model (GRC-ANN). Also, adaptive neuro-fuzzy inference system (ANFIS) and ANN models were developed to investigate the accuracy of three credible artificial intelligence (AI) models and the performance of these models in different LDC values. By comparing with empirical models developed in other studies, the results revealed the superior performance of GRC-ANN for LDC estimation. The sensitivity analysis of the three intelligent models developed in this study was done to determine the sensitivity of each model to its input parameters, especially the most important ones. The sensitivity analysis results showed that the W/H parameter (W: channel width; H: flow depth) has the most significant impact on the output of all three models in this research.
- Subjects :
- Fuzzy Logic
Neural Networks, Computer
Artificial Intelligence
Rivers
Subjects
Details
- Language :
- English
- ISSN :
- 0273-1223
- Volume :
- 80
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Water science and technology : a journal of the International Association on Water Pollution Research
- Publication Type :
- Academic Journal
- Accession number :
- 32144220
- Full Text :
- https://doi.org/10.2166/wst.2020.006