Back to Search Start Over

Enhanced Device Performance with Passivation of the TiO 2 Surface Using a Carboxylic Acid Fullerene Monolayer for a SnPb Perovskite Solar Cell with a Normal Planar Structure.

Authors :
Hamada K
Tanaka R
Kamarudin MA
Shen Q
Iikubo S
Minemoto T
Yoshino K
Toyoda T
Ma T
Kang DW
Hayase S
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2020 Apr 15; Vol. 12 (15), pp. 17776-17782. Date of Electronic Publication: 2020 Apr 04.
Publication Year :
2020

Abstract

Research on tin-lead (SnPb) perovskite solar cells (PSCs) has gained popularity in recent years because of their low band gap, which could be applied to tandem solar cells. However, most of the work is based on inverted PSCs using PEDOT:PSS as the hole-transport layer as normal-structure PSCs show lower efficiency. In this work, the reason behind the low efficiency of normal-structure SnPb PSCs is elucidated and surface passivation has been tested as a method to overcome the problem. In the case of normal PSCs, at the interface between the titania layer and SnPb perovskite, there are many carrier traps observed originating from Ti-O-Sn bonds. In order to avoid the direct contact between titania and the SnPb perovskite layer, the titania surface is passivated with carboxylic acid C <subscript>60</subscript> resulting in an efficiency increase from 5.14 to 7.91%. This will provide a direction of enhancing the efficiency of the normal-structure SnPb PSCs through heterojunction engineering.

Details

Language :
English
ISSN :
1944-8252
Volume :
12
Issue :
15
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
32204584
Full Text :
https://doi.org/10.1021/acsami.0c01411