Back to Search
Start Over
Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrays.
- Source :
-
Scientific reports [Sci Rep] 2020 Mar 27; Vol. 10 (1), pp. 5642. Date of Electronic Publication: 2020 Mar 27. - Publication Year :
- 2020
-
Abstract
- Selective area thermal etching (SATE) of gallium nitride is a simple subtractive process for creating novel device architectures and improving the structural and optical quality of III-nitride-based devices. In contrast to plasma etching, it allows, for example, the creation of enclosed features with extremely high aspect ratios without introducing ion-related etch damage. We report how SATE can create uniform and organized GaN nanohole arrays from c-plane and (11-22) semi-polar GaN in a conventional MOVPE reactor. The morphology, etching anisotropy and etch depth of the nanoholes were investigated by scanning electron microscopy for a broad range of etching parameters, including the temperature, the pressure, the NH <subscript>3</subscript> flow rate and the carrier gas mixture. The supply of NH <subscript>3</subscript> during SATE plays a crucial role in obtaining a highly anisotropic thermal etching process with the formation of hexagonal non-polar-faceted nanoholes. Changing other parameters affects the formation, or not, of non-polar sidewalls, the uniformity of the nanohole diameter, and the etch rate, which reaches 6 µm per hour. Finally, the paper discusses the SATE mechanism within a MOVPE environment, which can be applied to other mask configurations, such as dots, rings or lines, along with other crystallographic orientations.
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 32221397
- Full Text :
- https://doi.org/10.1038/s41598-020-62539-1