Back to Search Start Over

Upregulation of miR-92a-2-5p potentially contribute to anorectal malformations by inhibiting proliferation and enhancing apoptosis via PRKCA/β-catenin.

Authors :
Long CY
Xiao YX
Li SY
Tang XB
Yuan ZW
Bai YZ
Source :
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie [Biomed Pharmacother] 2020 Jul; Vol. 127, pp. 110117. Date of Electronic Publication: 2020 Mar 31.
Publication Year :
2020

Abstract

Anorectal malformations (ARMs) is one of the most common gastrointestinal anomalies. Previous research revealed that miR-92a-2-5p was upregulated in ARMs. However, the underlying roles remains unknown. The current study was to further investigate the spatiotemporal expression patterns of miR-92a-2-5p and its target gene protein kinase C alpha (PRKCA) predicted by bioinformatic method, and to explore their potential functions in anorectal malformations (ARMs). Rat models with ethylenethiourea-induced ARMs were made for subsequent experiments. Direct target relationship between miR-92a-2-5p and PRKCA was validated using a luciferase reporter assay. The spatiotemporal expression pattern of miR-92a-2-5p was evaluated using fluorescence in situ hybridization (FISH), while the expression of PRKCA was revealed by immunohistochemical staining and western blotting. IEC-6 cells were transfected with mimics/mimics NC (Negative control)/inhibitor/inhibitor NC of miR-92a-2-5p or si-PRKCA/si-PRKCA NC, respectively. Then the downstream molecules of miR-92a-2-5p, PRKCA and β-catenin, were subsequently detected. Meanwhile, apoptosis and viability assays were measured. Dual luciferase assay confirmed the direct regulatory relationship between miR-92a-2-5p and PRKCA. FISH revealed that miR-92a-2-5p was expressed with a higher level in ARMs fetuses. Further analyses of PRKCA showed lower protein expression level in ARMs group, which was opposite to miR-92a-2-5p. In vitro experiments revealed that overexpression of miR-92a-2-5p or knockdown of PRKCA can down-regulate PRKCA, up-regulate and facilitate nuclear localization of β-catenin, increase apoptosis and decrease proliferation of IEC-6. Taken together, these findings suggest that aberrantly high expression of miR-92a-2-5p potentially contribute to ARMs by inhibiting proliferation and enhancing apoptosis of intestinal cells via negatively regulating PRKCA/β-catenin.<br />Competing Interests: Declaration of competing Interest The authors declares that they have no competing interests.<br /> (Copyright © 2020 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)

Details

Language :
English
ISSN :
1950-6007
Volume :
127
Database :
MEDLINE
Journal :
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Publication Type :
Academic Journal
Accession number :
32244197
Full Text :
https://doi.org/10.1016/j.biopha.2020.110117