Back to Search
Start Over
Correlation between increased atrial expression of genes related to fatty acid metabolism and autophagy in patients with chronic atrial fibrillation.
- Source :
-
PloS one [PLoS One] 2020 Apr 21; Vol. 15 (4), pp. e0224713. Date of Electronic Publication: 2020 Apr 21 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Atrial metabolic disturbance contributes to the onset and development of atrial fibrillation (AF). Autophagy plays a role in maintaining the cellular energy balance. We examined whether atrial gene expressions related to fatty acid metabolism and autophagy are altered in chronic AF and whether they are related to each other. Right atrial tissue was obtained during heart surgery from 51 patients with sinus rhythm (SR, n = 38) or chronic AF (n = 13). Preoperative fasting serum free-fatty-acid levels were significantly higher in the AF patients. The atrial gene expression of fatty acid binding protein 3 (FABP3), which is involved in the cells' fatty acid uptake and intracellular fatty acid transport, was significantly increased in AF patients compared to SR patients; in the SR patients it was positively correlated with the right atrial diameter and intra-atrial electromechanical delay (EMD), parameters of structural and electrical atrial remodeling that were evaluated by an echocardiography. In contrast, the two groups' atrial contents of diacylglycerol (DAG), a toxic fatty acid metabolite, were comparable. Importantly, the atrial gene expression of microtubule-associated protein light chain 3 (LC3) was significantly increased in AF patients, and autophagy-related genes including LC3 were positively correlated with the atrial expression of FABP3. In conclusion, in chronic AF patients, the atrial expression of FABP3 was upregulated in association with autophagy-related genes without altered atrial DAG content. Our findings may support the hypothesis that dysregulated cardiac fatty acid metabolism contributes to the progression of AF and induction of autophagy has a cardioprotective effect against cardiac lipotoxicity in chronic AF.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Aged
Atrial Fibrillation metabolism
Diglycerides metabolism
Fatty Acid Binding Protein 3 genetics
Fatty Acid Binding Protein 3 metabolism
Female
Heart Atria metabolism
Humans
Male
Microtubule-Associated Proteins genetics
Microtubule-Associated Proteins metabolism
Middle Aged
Up-Regulation
Atrial Fibrillation genetics
Autophagy
Fatty Acids metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 15
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 32315296
- Full Text :
- https://doi.org/10.1371/journal.pone.0224713