Back to Search
Start Over
Polybrominated diphenyl ethers and decabromodiphenyl ethane in paired hair/serum and nail/serum from corresponding chemical manufacturing workers and their correlations to thyroid hormones, liver and kidney injury markers.
- Source :
-
The Science of the total environment [Sci Total Environ] 2020 Aug 10; Vol. 729, pp. 139049. Date of Electronic Publication: 2020 Apr 28. - Publication Year :
- 2020
-
Abstract
- We detected the polybrominated diphenyl ethers (PBDEs) or decabromodiphenyl ethane (DBDPE) in paired hair-serum and nail-serum samples collected from the corresponding chemical manufacturing workers. The levels of decabrominated diphenyl ether (BDE-209) or DBDPE in the serum, hair and nail samples were all significantly higher than those reported in other studies, and the "work place" (pretreatment or posttreatment workshop) was the primary influencing factor that affected the levels of specific BFRs in vivo. For BDE-209 workers, the BDE-209 in both the hair and nail samples were significantly and positively related to the BDE-209 in the serum, indicating that both hair and nails can be used as noninvasive biomatrices to reflect internal exposure to BDE-209. In DBDPE workers, hair rather than nails was more suitable for use as a noninvasive biomatrix to infer the DBDPE exposure level. A series of serum biomarkers reflecting thyroid hormones and liver and kidney injuries were tested to calculate the correlations between hair or nail BFR levels and the levels of the biomatrices. The BDE-209 in the hair samples was significantly and positively correlated with the total protein (TP), and the nail BDE-209 level was significantly and positively related to the total bilirubin (TBIL), indirect bilirubin (IDBIL) and uric acid (UA). The DBDPE in hair was significantly and positively correlated with the thyroid hormones free triiodothyronine (fT3) and total triiodothyronine (tT3) and kidney injury markers, including blood urea nitrogen (BUN), creatinine (CRE) and cystatin C (Cys-C). In addition, the nail DBDPE levels were significantly and positively correlated with the albumin/globulin (A/G), BUN, CRE and Cys-C but negatively correlated with the TP and globulin (GLO). Our findings provide preliminary evidence that hair and nails can be used as noninvasive biomatrices for assessing internal BFR exposure and health damage in occupational workers.<br />Competing Interests: Declaration of competing interest The authors declared that there is no conflict of interest.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 729
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 32375065
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2020.139049