Back to Search Start Over

Edaravone protects rat astrocytes from oxidative or neurotoxic inflammatory insults by restoring Akt/Bcl-2/Caspase-3 signaling axis.

Authors :
Guo Z
Wu HT
Li XX
Yu Y
Gu RZ
Lan R
Qin XY
Source :
IBRO reports [IBRO Rep] 2020 Apr 23; Vol. 8, pp. 122-128. Date of Electronic Publication: 2020 Apr 23 (Print Publication: 2020).
Publication Year :
2020

Abstract

Astrocytes are the major glia cells in the central nervous system (CNS). Increasing evidence indicates that more than to be safe-guard and supporting cells for neurons, astrocytes play a broad spectrum of neuroprotective and pathological functions. Thus, they are compelling models to decipher mechanistic insights of glia cells to CNS insults and for the development of drugs. Edaravone is a free radical scavenger with the capacity to eliminate hydroxyl radicals and lipid peroxides. In this study, we examined the neuroprotective effects of edaravone in rat astrocytes challenged by hydrogen peroxide (H <subscript>2</subscript> O <subscript>2</subscript> ) or bacterial lipopolysaccharides (LPS), respectively. We discovered that edaravone attenuated H <subscript>2</subscript> O <subscript>2</subscript> -induced oxidative stress by reactivating the Akt signaling axis and antagonistically restoring the expression of apoptosis associated regulators such as Bcl-2 and Caspase-3. Consistently, inhibition of Akt signaling by LY294002 attenuated the anti-oxidative activity of edaravone. In addition, edaravone mitigated LPS-induced morphological changes in astrocytes and alleviated the inflammatory activation and expression of TNF-α, IL-1β, IL-6 and NOS2. In summary, our data suggested that edavarone effectively protects astrocytes from oxidative stress or infectious insults, which may pave a new avenue for its application in preclinical research and human disease therapeutics.<br /> (© 2020 The Author(s).)

Details

Language :
English
ISSN :
2451-8301
Volume :
8
Database :
MEDLINE
Journal :
IBRO reports
Publication Type :
Academic Journal
Accession number :
32382683
Full Text :
https://doi.org/10.1016/j.ibror.2020.04.003