Back to Search
Start Over
Sonic Hedgehog and Triiodothyronine Pathway Interact in Mouse Embryonic Neural Stem Cells.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2020 May 23; Vol. 21 (10). Date of Electronic Publication: 2020 May 23. - Publication Year :
- 2020
-
Abstract
- Neural stem cells are fundamental to development of the central nervous system (CNS)-as well as its plasticity and regeneration-and represent a potential tool for neuro transplantation therapy and research. This study is focused on examination of the proliferation dynamic and fate of embryonic neural stem cells (eNSCs) under differentiating conditions. In this work, we analyzed eNSCs differentiating alone and in the presence of sonic hedgehog (SHH) or triiodothyronine (T3) which play an important role in the development of the CNS. We found that inhibition of the SHH pathway and activation of the T3 pathway increased cellular health and survival of differentiating eNSCs. In addition, T3 was able to increase the expression of the gene for the receptor smoothened ( Smo ), which is part of the SHH signaling cascade, while SHH increased the expression of the T3 receptor beta gene ( Thrb ). This might be the reason why the combination of SHH and T3 increased the expression of the thyroxine 5-deiodinase type III gene ( Dio3 ), which inhibits T3 activity, which in turn affects cellular health and proliferation activity of eNSCs.
- Subjects :
- Animals
Cells, Cultured
Hedgehog Proteins genetics
Iodide Peroxidase genetics
Iodide Peroxidase metabolism
Mice
Mice, Inbred C57BL
Mouse Embryonic Stem Cells cytology
Neural Stem Cells cytology
Smoothened Receptor genetics
Smoothened Receptor metabolism
Thyroid Hormone Receptors beta genetics
Thyroid Hormone Receptors beta metabolism
Hedgehog Proteins metabolism
Mouse Embryonic Stem Cells metabolism
Neural Stem Cells metabolism
Neurogenesis
Triiodothyronine metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 21
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 32456161
- Full Text :
- https://doi.org/10.3390/ijms21103672