Back to Search
Start Over
Arabidopsis SMN2/HEN2, Encoding DEAD-Box RNA Helicase, Governs Proper Expression of the Resistance Gene SMN1/RPS6 and Is Involved in Dwarf, Autoimmune Phenotypes of mekk1 and mpk4 Mutants.
- Source :
-
Plant & cell physiology [Plant Cell Physiol] 2020 Aug 01; Vol. 61 (8), pp. 1507-1516. - Publication Year :
- 2020
-
Abstract
- In Arabidopsis thaliana, a mitogen-activated protein kinase pathway, MEKK1-MKK1/MKK2-MPK4, is important for basal resistance and disruption of this pathway results in dwarf, autoimmune phenotypes. To elucidate the complex mechanisms activated by the disruption of this pathway, we have previously developed a mutant screening system based on a dwarf autoimmune line that overexpressed the N-terminal regulatory domain of MEKK1. Here, we report that the second group of mutants, smn2, had defects in the SMN2 gene, encoding a DEAD-box RNA helicase. SMN2 is identical to HEN2, whose function is vital for the nuclear RNA exosome because it provides non-ribosomal RNA specificity for RNA turnover, RNA quality control and RNA processing. Aberrant SMN1/RPS6 transcripts were detected in smn2 and hen2 mutants. Disease resistance against Pseudomonas syringae pv. tomato DC3000 (hopA1), which is conferred by SMN1/RPS6, was decreased in smn2 mutants, suggesting a functional connection between SMN1/RPS6 and SMN2/HEN2. We produced double mutants mekk1smn2 and mpk4smn2 to determine whether the smn2 mutations suppress the dwarf, autoimmune phenotypes of the mekk1 and mpk4 mutants, as the smn1 mutations do. As expected, the mekk1 and mpk4 phenotypes were suppressed by the smn2 mutations. These results suggested that SMN2 is involved in the proper function of SMN1/RPS6. The Gene Ontology enrichment analysis using RNA-seq data showed that defense genes were downregulated in smn2, suggesting a positive contribution of SMN2 to the genome-wide expression of defense genes. In conclusion, this study provides novel insight into plant immunity via SMN2/HEN2, an essential component of the nuclear RNA exosome.<br /> (© The Author(s) 2020. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.)
- Subjects :
- Arabidopsis immunology
Arabidopsis Proteins metabolism
Arabidopsis Proteins physiology
DEAD-box RNA Helicases metabolism
DEAD-box RNA Helicases physiology
Genome-Wide Association Study
Arabidopsis genetics
Arabidopsis Proteins genetics
DEAD-box RNA Helicases genetics
Disease Resistance genetics
Gene Expression Regulation, Plant genetics
Genes, Plant genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1471-9053
- Volume :
- 61
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- Plant & cell physiology
- Publication Type :
- Academic Journal
- Accession number :
- 32467981
- Full Text :
- https://doi.org/10.1093/pcp/pcaa071