Back to Search Start Over

Hyperalignment: Modeling shared information encoded in idiosyncratic cortical topographies.

Authors :
Haxby JV
Guntupalli JS
Nastase SA
Feilong M
Source :
ELife [Elife] 2020 Jun 02; Vol. 9. Date of Electronic Publication: 2020 Jun 02.
Publication Year :
2020

Abstract

Information that is shared across brains is encoded in idiosyncratic fine-scale functional topographies. Hyperalignment captures shared information by projecting pattern vectors for neural responses and connectivities into a common, high-dimensional information space, rather than by aligning topographies in a canonical anatomical space. Individual transformation matrices project information from individual anatomical spaces into the common model information space, preserving the geometry of pairwise dissimilarities between pattern vectors, and model cortical topography as mixtures of overlapping, individual-specific topographic basis functions, rather than as contiguous functional areas. The fundamental property of brain function that is preserved across brains is information content, rather than the functional properties of local features that support that content. In this Perspective, we present the conceptual framework that motivates hyperalignment, its computational underpinnings for joint modeling of a common information space and idiosyncratic cortical topographies, and discuss implications for understanding the structure of cortical functional architecture.<br />Competing Interests: JH, JG, SN, MF No competing interests declared<br /> (© 2020, Haxby et al.)

Details

Language :
English
ISSN :
2050-084X
Volume :
9
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
32484439
Full Text :
https://doi.org/10.7554/eLife.56601