Back to Search Start Over

Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography.

Authors :
Sun C
Ladores C
Hong J
Nguyen DQ
Chua J
Ting D
Schmetterer L
Wong TY
Cheng CY
Tan ACS
Source :
Scientific reports [Sci Rep] 2020 Jun 12; Vol. 10 (1), pp. 9580. Date of Electronic Publication: 2020 Jun 12.
Publication Year :
2020

Abstract

A major complication of hypertension is microvascular damage and capillary rarefaction is a known complication of hypertensive end-organ damage which confers a higher risk of systemic disease such as stroke and cardiovascular events. Our aim was to study the effect of hypertension on the retinal microvasculature using non-invasive optical coherence tomography angiography (OCTA). We performed a case-control study of 94 eyes of 94 participants with systemic hypertension and 46 normal control eyes from the Singapore Chinese Eye Study using a standardized protocol to collect data on past medical history of hypertension, including the number and type of hypertensive medications and assessed mean arterial pressure. Retinal vascular parameters were measured in all eyes using OCTA. In the multivariate analysis adjusting for confounders, compared to controls, eyes of hypertensive patients showed a decrease in the macular vessel density at the level of the superficial [OR 0.02; 95% CI, 0 to 0.64; P 0.027] and deep venous plexuses [OR 0.03; 95% CI, 0 to 0.41; P 0.009] and an increase in the deep foveal avascular zone. This shows that hypertension is associated with reduced retinal vessel density and an increased foveal avascular zone, especially in the deep venous plexus, as seen on OCTA and there is a potential role in using OCTA as a clinical tool to monitor hypertensive damage and identifying at risk patients.

Details

Language :
English
ISSN :
2045-2322
Volume :
10
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
32533105
Full Text :
https://doi.org/10.1038/s41598-020-66736-w