Back to Search
Start Over
Functional analysis of BPSS2242 reveals its detoxification role in Burkholderia pseudomallei under salt stress.
- Source :
-
Scientific reports [Sci Rep] 2020 Jun 26; Vol. 10 (1), pp. 10453. Date of Electronic Publication: 2020 Jun 26. - Publication Year :
- 2020
-
Abstract
- A bpss2242 gene, encoding a putative short-chain dehydrogenase/oxidoreductase (SDR) in Burkholderia pseudomallei, was identified and its expression was up-regulated by ten-fold when B. pseudomallei was cultured under high salt concentration. Previous study suggested that BPSS2242 plays important roles in adaptation to salt stress and pathogenesis; however, its biological functions are still unknown. Herein, we report the biochemical properties and functional characterization of BPSS2242 from B. pseudomallei. BPSS2242 exhibited NADPH-dependent reductase activity toward diacetyl and methylglyoxal, toxic electrophilic dicarbonyls. The conserved catalytic triad was identified and found to play critical roles in catalysis and cofactor binding. Tyr162 and Lys166 are involved in NADPH binding and mutation of Lys166 causes a conformational change, altering protein structure. Overexpression of BPSS2242 in Escherichia coli increased bacterial survival upon exposure to diacetyl and methylglyoxal. Importantly, the viability of B. pseudomallei encountered dicarbonyl toxicity was enhanced when cultured under high salt concentration as a result of BPSS2242 overexpression. This is the first study demonstrating that BPSS2242 is responsible for detoxification of toxic metabolites, constituting a protective system against reactive carbonyl compounds in B. pseudomallei..
- Subjects :
- Burkholderia pseudomallei enzymology
Burkholderia pseudomallei genetics
Burkholderia pseudomallei physiology
NADP metabolism
Oxidoreductases metabolism
Salt Stress
Sequence Alignment
Sequence Analysis, DNA
Short Chain Dehydrogenase-Reductases genetics
Bacterial Proteins metabolism
Burkholderia pseudomallei metabolism
Short Chain Dehydrogenase-Reductases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 32591552
- Full Text :
- https://doi.org/10.1038/s41598-020-67382-y