Back to Search Start Over

Highly tunable properties in pressure-treated two-dimensional Dion-Jacobson perovskites.

Authors :
Kong L
Liu G
Gong J
Mao L
Chen M
Hu Q
Lü X
Yang W
Kanatzidis MG
Mao HK
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2020 Jul 14; Vol. 117 (28), pp. 16121-16126. Date of Electronic Publication: 2020 Jun 29.
Publication Year :
2020

Abstract

The application of pressure can achieve novel structures and exotic phenomena in condensed matters. However, such pressure-induced transformations are generally reversible and useless for engineering materials for ambient-environment applications. Here, we report comprehensive high-pressure investigations on a series of Dion-Jacobson (D-J) perovskites A'A <subscript> n -1</subscript> Pb <subscript> n </subscript> I <subscript>3 n +1</subscript> [A' = 3-(aminomethyl) piperidinium (3AMP), A = methylammonium (MA), n = 1, 2, 4]. Our study demonstrates their irreversible behavior, which suggests pressure/strain engineering could viably improve light-absorber material not only in situ but also ex situ, thus potentially fostering the development of optoelectronic and electroluminescent materials. We discovered that the photoluminescence (PL) intensities are remarkably enhanced by one order of magnitude at mild pressures. Also, higher pressure significantly changes the lattices, boundary conditions of electronic wave functions, and possibly leads to semiconductor-metal transitions. For (3AMP)(MA) <subscript>3</subscript> Pb <subscript>4</subscript> I <subscript>13</subscript> , permanent recrystallization from 2D to three-dimensional (3D) structure occurs upon decompression, with dramatic changes in optical properties.<br />Competing Interests: The authors declare no competing interest.

Details

Language :
English
ISSN :
1091-6490
Volume :
117
Issue :
28
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
32601216
Full Text :
https://doi.org/10.1073/pnas.2003561117