Back to Search Start Over

Manipulating interstitial carbon atoms in the nickel octahedral site for highly efficient hydrogenation of alkyne.

Authors :
Niu Y
Huang X
Wang Y
Xu M
Chen J
Xu S
Willinger MG
Zhang W
Wei M
Zhang B
Source :
Nature communications [Nat Commun] 2020 Jul 03; Vol. 11 (1), pp. 3324. Date of Electronic Publication: 2020 Jul 03.
Publication Year :
2020

Abstract

Light elements in the interstitial site of transition metals have strong influence on heterogeneous catalysis via either expression of surface structures or even direct participation into reaction. Interstitial atoms are generally metastable with a strong environmental dependence, setting up giant challenges in controlling of heterogeneous catalysis. Herein, we show that the desired carbon atoms can be manipulated within nickel (Ni) lattice for improving the selectivity in acetylene hydrogenation reaction. The radius of octahedral space of Ni is expanded from 0.517 to 0.524 Å via formation of Ni <subscript>3</subscript> Zn, affording the dissociated carbon atoms to readily dissolve and diffuse at mild temperatures. Such incorporated carbon atoms coordinate with the surrounding Ni atoms for generation of Ni <subscript>3</subscript> ZnC <subscript>0.7</subscript> and thereof inhibit the formation of subsurface hydrogen structures. Thus, the selectivity and stability are dramatically improved, as it enables suppressing the pathway of ethylene hydrogenation and restraining the accumulation of carbonaceous species on surface.

Details

Language :
English
ISSN :
2041-1723
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
32620829
Full Text :
https://doi.org/10.1038/s41467-020-17188-3