Back to Search
Start Over
Pyrrocidine, a molecular off switch for fumonisin biosynthesis.
- Source :
-
PLoS pathogens [PLoS Pathog] 2020 Jul 06; Vol. 16 (7), pp. e1008595. Date of Electronic Publication: 2020 Jul 06 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Sarocladium zeae is a fungal endophyte of maize and can be found co-inhabiting a single seed with Fusarium verticillioides, a major mycotoxigenic food safety threat. S. zeae produces pyrrocidines A and B that inhibit the growth of F. verticillioides and may limit its spread within the seed to locations lacking S. zeae. Although coinhabiting single seeds, the fungi are generally segregated in separate tissues. To understand F. verticillioides' protective physiological response to pyrrocidines we sequenced the F. verticillioides transcriptome upon exposure to purified pyrrocidine A or B at sub-inhibitory concentrations. Through this work we identified a F. verticillioides locus FvABC3 (FVEG&#95;11089) encoding a transporter critical for resistance to pyrrocidine. We also identified FvZBD1 (FVEG&#95;00314), a gene directly adjacent to the fumonisin biosynthetic gene cluster that was induced several thousand-fold in response to pyrrocidines. FvZBD1 is postulated to act as a genetic repressor of fumonisin production since deletion of the gene resulted in orders of magnitude increase in fumonisin. Further, pyrrocidine acts, likely through FvZBD1, to shut off fumonisin biosynthesis. This suggests that S. zeae is able to hack the secondary metabolic program of a competitor fungus, perhaps as preemptive self-protection, in this case impacting a mycotoxin of central concern for food safety.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Bridged-Ring Compounds metabolism
Bridged-Ring Compounds pharmacology
Coinfection
Disease Resistance genetics
Genes, Fungal
Mycoses metabolism
Pyrrolidinones metabolism
Pyrrolidinones pharmacology
Acremonium
Fumonisins metabolism
Fusarium genetics
Mycoses microbiology
Plant Diseases microbiology
Zea mays microbiology
Subjects
Details
- Language :
- English
- ISSN :
- 1553-7374
- Volume :
- 16
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- PLoS pathogens
- Publication Type :
- Academic Journal
- Accession number :
- 32628727
- Full Text :
- https://doi.org/10.1371/journal.ppat.1008595