Back to Search Start Over

Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris).

Authors :
Oliveira ARDS
Martins LDV
Bustamante FO
Muñoz-Amatriaín M
Close T
da Costa AF
Benko-Iseppon AM
Pedrosa-Harand A
Brasileiro-Vidal AC
Source :
Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology [Chromosome Res] 2020 Dec; Vol. 28 (3-4), pp. 293-306. Date of Electronic Publication: 2020 Jul 11.
Publication Year :
2020

Abstract

Comparative cytogenetic mapping is a powerful approach to gain insights into genome organization of orphan crops, lacking a whole sequenced genome. To investigate the cytogenomic evolution of important Vigna and Phaseolus beans, we built a BAC-FISH (fluorescent in situ hybridization of bacterial artificial chromosome) map of Vigna aconitifolia (Vac, subgenus Ceratotropis), species with no sequenced genome, and compared with V. unguiculata (Vu, subgenus Vigna) and Phaseolus vulgaris (Pv) maps. Seventeen Pv BACs, eight Vu BACs, and 5S and 35S rDNA probes were hybridized in situ on the 11 Vac chromosome pairs. Five Vac chromosomes (Vac6, Vac7, Vac9, Vac10, and Vac11) showed conserved macrosynteny and collinearity between V. unguiculata and P. vulgaris. On the other hand, we observed collinearity breaks, identified by pericentric inversions involving Vac2 (Vu2), Vac4 (Vu4), and Vac3 (Pv3). We also detected macrosynteny breaks of translocation type involving chromosomes 1 and 8 of V. aconitifolia and P. vulgaris; 2 and 3 of V. aconitifolia and P. vulgaris; and 1 and 5 of V. aconitifolia and V. unguiculata. Considering our data and previous BAC-FISH studies, six chromosomes (1, 2, 3, 4, 5, and 8) are involved in major karyotype divergences between genera and five (1, 2, 3, 4, and 5) between Vigna subgenera, including mechanisms such as duplications, inversions, and translocations. Macrosynteny breaks between Vigna and Phaseolus suggest that the major chromosomal rearrangements have occurred within the Vigna clade. Our cytogenomic comparisons bring new light on the degree of shared macrosynteny and mechanisms of karyotype diversification during Vigna and Phaseolus evolution.

Details

Language :
English
ISSN :
1573-6849
Volume :
28
Issue :
3-4
Database :
MEDLINE
Journal :
Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology
Publication Type :
Academic Journal
Accession number :
32654079
Full Text :
https://doi.org/10.1007/s10577-020-09635-0