Back to Search
Start Over
Antimicrobial Photodynamic Therapy with Chlorin e6 Is Bactericidal against Biofilms of the Primary Human Otopathogens.
- Source :
-
MSphere [mSphere] 2020 Jul 15; Vol. 5 (4). Date of Electronic Publication: 2020 Jul 15. - Publication Year :
- 2020
-
Abstract
- Moraxella catarrhalis , Streptococcus pneumoniae , and nontypeable Haemophilus influenzae (NTHi) are ubiquitous upper respiratory opportunistic pathogens. Together, these three microbes are the most common causative bacterial agents of pediatric otitis media (OM) and have therefore been characterized as the primary human otopathogens. OM is the most prevalent bacterial infection in children and the primary reason for antibiotic administration in this population. Moreover, biofilm formation has been confirmed as a primary mechanism of chronic and recurrent OM disease. As bacterial biofilms are inherently metabolically recalcitrant to most antibiotics and these complex structures also present a significant challenge to the immune system, there is a clear need to identify novel antimicrobial approaches to treat OM infections. In this study, we evaluated the potential efficacy of antibacterial photodynamic therapy (aPDT) with the photosensitizer chlorin e6 (Ce6) against planktonic as well as biofilm-associated M. catarrhalis , S. pneumoniae , and NTHi. Our data indicate aPDT with Ce6 elicits significant bactericidal activity against both planktonic cultures and established biofilms formed by the three major otopathogens (with an efficacy of ≥99.9% loss of viability). Notably, the implementation of a novel, dual-treatment aPDT protocol resulted in this disinfectant effect on biofilm-associated bacteria and, importantly, inhibited bacterial regrowth 24 h posttreatment. Taken together, these data suggest this novel Ce6-aPDT treatment may be a powerful and innovative therapeutic strategy to effectively treat and eradicate bacterial OM infections and, significantly, prevent the development of recurrent disease. IMPORTANCE Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis , Streptococcus pneumoniae , and nontypeable Haemophilus influenzae , has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM.<br /> (Copyright © 2020 Luke-Marshall et al.)
- Subjects :
- Bacteria classification
Bacteria pathogenicity
Chlorophyllides
Haemophilus influenzae drug effects
Haemophilus influenzae pathogenicity
Humans
Microbial Viability drug effects
Moraxella catarrhalis drug effects
Moraxella catarrhalis pathogenicity
Otitis Media drug therapy
Streptococcus pneumoniae drug effects
Streptococcus pneumoniae pathogenicity
Anti-Bacterial Agents pharmacology
Bacteria drug effects
Biofilms drug effects
Otitis Media microbiology
Photochemotherapy
Porphyrins pharmacology
Subjects
Details
- Language :
- English
- ISSN :
- 2379-5042
- Volume :
- 5
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- MSphere
- Publication Type :
- Academic Journal
- Accession number :
- 32669474
- Full Text :
- https://doi.org/10.1128/mSphere.00492-20