Back to Search Start Over

Highly efficient and fast removal of colored pollutants from single and binary systems, using magnetic mesoporous silica.

Authors :
Nicola R
Muntean SG
Nistor MA
Putz AM
Almásy L
Săcărescu L
Source :
Chemosphere [Chemosphere] 2020 Dec; Vol. 261, pp. 127737. Date of Electronic Publication: 2020 Jul 26.
Publication Year :
2020

Abstract

Magnetic mesoporous silica material was tested as adsorbent for removal of two usual colored compounds present in industrial wastewater. The magnetic mesoporous silica was synthesized by modified sol-gel method and characterized from the morpho-textural, structural and magnetic point of view. The specific surface area and the total pore volume indicate a good adsorption capacity of the material, and the obtained saturation magnetization strength value denotes a good magnetic separation from solution. The adsorption capacity of magnetic mesoporous silica increases with the increase of the initial dye concentration, and the removal efficiency of the dyes was dependent on the pH of the solution and decreased with increasing temperature. The pseudo-second-order kinetic model described best the adsorption mechanism, and the maximum adsorption capacities were determined from the Sips isotherm model, being 88.29 mg/g for Congo Red and 208.31 mg/g for Methylene Blue. A complete thermodynamic evaluation was performed, by determining the free energy, enthalpy and entropy, and the result showed a spontaneous and exothermic adsorption process. The recovery and reutilization of the adsorbent were estimated in five cycles of adsorption-desorption, and the results indicated a good stability and reusability of magnetic mesoporous silica. The new magnetic mesoporous silica can be easily separated from solution, via an external magnetic field, and may be effectively applied as adsorbent for elimination of dyes from colored polluted waters.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
261
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
32738712
Full Text :
https://doi.org/10.1016/j.chemosphere.2020.127737