Back to Search
Start Over
Ultrafast coupled charge and spin dynamics in strongly correlated NiO.
- Source :
-
Nature communications [Nat Commun] 2020 Aug 14; Vol. 11 (1), pp. 4095. Date of Electronic Publication: 2020 Aug 14. - Publication Year :
- 2020
-
Abstract
- Charge excitations across an electronic band gap play an important role in opto-electronics and light harvesting. In contrast to conventional semiconductors, studies of above-band-gap photoexcitations in strongly correlated materials are still in their infancy. Here we reveal the ultrafast dynamics controlled by Hund's physics in strongly correlated photoexcited NiO. By combining time-resolved two-photon photoemission experiments with state-of-the-art numerical calculations, an ultrafast (≲10 fs) relaxation due to Hund excitations and related photo-induced in-gap states are identified. Remarkably, the weight of these in-gap states displays long-lived coherent THz oscillations up to 2 ps at low temperature. The frequency of these oscillations corresponds to the strength of the antiferromagnetic superexchange interaction in NiO and their lifetime vanishes slightly above the Néel temperature. Numerical simulations of a two-band t-J model reveal that the THz oscillations originate from the interplay between local many-body excitations and antiferromagnetic spin correlations.
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 32796844
- Full Text :
- https://doi.org/10.1038/s41467-020-17925-8