Back to Search Start Over

Remediation of different nitroaromatic pollutants by a promising agent of Cupriavidus sp. strain a3.

Authors :
Tiwari J
Gandhi D
Sivanesan S
Naoghare P
Bafana A
Source :
Ecotoxicology and environmental safety [Ecotoxicol Environ Saf] 2020 Dec 01; Vol. 205, pp. 111138. Date of Electronic Publication: 2020 Aug 21.
Publication Year :
2020

Abstract

Nitrobenzene, nitrotoluenes and nitrobenzoic acid are toxic and mutagenic. Their removal from the environment is necessary to avoid health and environmental damage. In this study, Cupriavidus strain a3 was found to utilize 2-nitrotoluene (2NT), 3-nitrotoluene (3NT), 4-nitrotoluene (4NT), nitrobenzene (NB) and 2-nitrobenzoic acid (2NBA) as carbon and nitrogen source, resulting in their detoxification. The metabolism involved reductive transformation of nitroaromatics to the corresponding amines followed by cleavage of amino group to release ammonia. Cell free extract showed nitroreductase activity in the range of 310-389 units/mg. NB was reduced to form benzamine and 4-aminophenol, 2NT was reduced to 2-aminotoluene, whereas 2NBA was reduced to form 2-aminobenzoic acid. Similarly, 3NT was metabolized to 3-aminotoluene and 2-amino-4-methylphenol, while 4NT was reduced to 4-nitrosotoluene and 4-aminotoluene. Cytotoxicity and apoptosis assays using Jurkat cell line, and Ames test were used to evaluate the detoxification of nitroaromatics during biodegradation. Biodegradation with Cupriavidus resulted in 2.6-11 fold increase in cell viability, 1.3-2.3 fold reduction in apoptosis, 1.6-55 fold reduction in caspase-3 activation, and complete disappearance of mutagenic activity. In soil microcosm, bioaugmentation with Cupriavidus resulted in 16-59% degradation of various nitroaromatics, as against <14% degradation without bioaugmentation. Thus, the present study reflects promising capability of Cupriavidus strain a3 in degradation and detoxification of multiple nitroaromatics.<br /> (Copyright © 2020 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2414
Volume :
205
Database :
MEDLINE
Journal :
Ecotoxicology and environmental safety
Publication Type :
Academic Journal
Accession number :
32836156
Full Text :
https://doi.org/10.1016/j.ecoenv.2020.111138