Back to Search Start Over

Developing a population-state decision system for intelligently reprogramming extracellular electron transfer in Shewanella oneidensis .

Authors :
Li FH
Tang Q
Fan YY
Li Y
Li J
Wu JH
Luo CF
Sun H
Li WW
Yu HQ
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2020 Sep 15; Vol. 117 (37), pp. 23001-23010. Date of Electronic Publication: 2020 Aug 27.
Publication Year :
2020

Abstract

The unique extracellular electron transfer (EET) ability has positioned electroactive bacteria (EAB) as a major class of cellular chassis for genetic engineering aimed at favorable environmental, energy, and geoscience applications. However, previous efforts to genetically enhance EET ability have often impaired the basal metabolism and cellular growth due to the competition for the limited cellular resource. Here, we design a quorum sensing-based population-state decision (PSD) system for intelligently reprogramming the EET regulation system, which allows the rebalanced allocation of the cellular resource upon the bacterial growth state. We demonstrate that the electron output from Shewanella oneidensis MR-1 could be greatly enhanced by the PSD system via shifting the dominant metabolic flux from initial bacterial growth to subsequent EET enhancement (i.e., after reaching a certain population-state threshold). The strain engineered with this system achieved up to 4.8-fold EET enhancement and exhibited a substantially improved pollutant reduction ability, increasing the reduction efficiencies of methyl orange and hexavalent chromium by 18.8- and 5.5-fold, respectively. Moreover, the PSD system outcompeted the constant expression system in managing EET enhancement, resulting in considerably enhanced electron output and pollutant bioreduction capability. The PSD system provides a powerful tool for intelligently managing extracellular electron transfer and may inspire the development of new-generation smart bioelectrical devices for various applications.<br />Competing Interests: The authors declare no competing interest.<br /> (Copyright © 2020 the Author(s). Published by PNAS.)

Details

Language :
English
ISSN :
1091-6490
Volume :
117
Issue :
37
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
32855303
Full Text :
https://doi.org/10.1073/pnas.2006534117