Back to Search Start Over

Efficiency of benthic diatom-associated bacteria in the removal of benzo(a)pyrene and fluoranthene.

Authors :
Kahla O
Melliti Ben Garali S
Karray F
Ben Abdallah M
Kallel N
Mhiri N
Zaghden H
Barhoumi B
Pringault O
Quéméneur M
Tedetti M
Sayadi S
Sakka Hlaili A
Source :
The Science of the total environment [Sci Total Environ] 2021 Jan 10; Vol. 751, pp. 141399. Date of Electronic Publication: 2020 Aug 01.
Publication Year :
2021

Abstract

We investigated the efficiency of a benthic diatom-associated bacteria in removing benzo(a)pyrene (BaP) and fluoranthene (Flt). The diatom, isolated from a PAH-contaminated sediment of the Bizerte Lagoon (Tunisia), was exposed in axenic and non-axenic cultures to PAHs over 7 days. The diversity of the associated bacteria, both attached (AB) and free-living bacteria (FB), was analyzed by the 16S rRNA amplicon sequencing. The diatom, which maintained continuous growth under PAH treatments, was able to accumulate BaP and Flt, with different efficiencies between axenic and non-axenic cultures. Biodegradation, which constituted the main process for PAH elimination, was enhanced in the presence of bacteria, indicating the co-metabolic synergy of microalgae and associated bacteria in removing BaP and Flt. Diatom and bacteria showed different capacities in the degradation of BaP and Flt. Nitzschia sp. harbored bacterial communities with a distinct composition between attached and free-living bacteria. The AB fraction exhibited higher diversity and abundance relative to FB, while the FB fraction contained genera with the known ability of PAH degradation, such as Marivita, Erythrobacter, and Alcaligenes. Moreover, strains of Staphylococcus and Micrococcus, isolated from the FB community, showed the capacity to grow in the presence of crude oil. These results suggest that a "benthic Nitzschia sp.-associated hydrocarbon-degrading bacteria" consortium can be applied in the bioremediation of PAH-contaminated sites.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020. Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1879-1026
Volume :
751
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
32866829
Full Text :
https://doi.org/10.1016/j.scitotenv.2020.141399