Back to Search Start Over

Inactivation of endothelial cell phosphoinositide 3-kinase β inhibits tumor angiogenesis and tumor growth.

Authors :
Azad AK
Zhabyeyev P
Vanhaesebroeck B
Eitzen G
Oudit GY
Moore RB
Murray AG
Source :
Oncogene [Oncogene] 2020 Oct; Vol. 39 (41), pp. 6480-6492. Date of Electronic Publication: 2020 Sep 02.
Publication Year :
2020

Abstract

Angiogenesis inhibitors, such as the receptor tyrosine kinase (RTK) inhibitor sunitinib, target vascular endothelial growth factor (VEGF) signaling in cancers. However, only a fraction of patients respond, and most ultimately develop resistance to current angiogenesis inhibitor therapies. Activity of alternative pro-angiogenic growth factors, acting via RTK or G-protein coupled receptors (GPCR), may mediate VEGF inhibitor resistance. The phosphoinositide 3-kinase (PI3K)β isoform is uniquely coupled to both RTK and GPCRs. We investigated the role of endothelial cell (EC) PI3Kβ in tumor angiogenesis. Pro-angiogenic GPCR ligands were expressed by patient-derived renal cell carcinomas (PD-RCC), and selective inactivation of PI3Kβ reduced PD-RCC-stimulated EC spheroid sprouting. EC-specific PI3Kβ knockout (ΕC-βKO) in mice potentiated the sunitinib-induced reduction in subcutaneous growth of LLC1 and B16F10, and lung metastasis of B16F10 tumors. Compared to single-agent sunitinib treatment, tumors in sunitinib-treated ΕC-βKO mice showed a marked decrease in microvessel density, and reduced new vessel formation. The fraction of perfused mature tumor microvessels was increased in ΕC-βKO mice suggesting immature microvessels were most sensitive to combined sunitinib and PI3Kβ inactivation. Taken together, EC PI3Kβ inactivation with sunitinib inhibition reduces microvessel turnover and decreases heterogeneity of the tumor microenvironment, hence PI3Kβ inhibition may be a useful adjuvant antiangiogenesis therapy with sunitinib.

Details

Language :
English
ISSN :
1476-5594
Volume :
39
Issue :
41
Database :
MEDLINE
Journal :
Oncogene
Publication Type :
Academic Journal
Accession number :
32879446
Full Text :
https://doi.org/10.1038/s41388-020-01444-3