Back to Search Start Over

A comprehensive analysis of an effective flocculation method for high quality microalgal biomass harvesting.

Authors :
Labeeuw L
Commault AS
Kuzhiumparambil U
Emmerton B
Nguyen LN
Nghiem LD
Ralph PJ
Source :
The Science of the total environment [Sci Total Environ] 2021 Jan 15; Vol. 752, pp. 141708. Date of Electronic Publication: 2020 Aug 15.
Publication Year :
2021

Abstract

Flocculation is a low-cost harvesting technique for microalgae biomass production, but flocculation efficiency is species dependent. In this study, we investigated the efficacy of two synthetic (polyacrylamide) and one natural (chitosan) flocculants against three algal species: the cyanobacterium Synechocystis sp., the freshwater Chlorella vulgaris, and the marine Phaeodactylum tricornutum at laboratory and pilot scales to evaluate harvesting efficiency, biomass integrity and media recycling. Growth phase affected the harvesting efficiency of the eukaryotic microalgae. The flocculation was optimal at stationary phase with high flocculation efficiency achieved using polyacrylamides at 24-36 mg/g dry weight. The effect of the flocculants on the harvested biomass was investigated. The flocculated Synechocystis sp. showed a higher proportion of compromised cells compared to C. vulgaris and P. tricornutum likely due to differences in cell walls composition. Compromised cells could lead to the release of valuable products into the surrounding growth media during flocculation. The residual culture media was recycled once with no impact on cell growth for all treatments and algal species. The flocculation technique was demonstrated at pilot-scale using 350 L microalgal suspension, showing an efficiency of 82-90% at a polyacrylamide dosage of 6.5-10 mg/L. This efficiency and the biomass quality are comparable to the laboratory-scale results. Overall, results indicate that polyacrylamide flocculants work on a wide range of species without the need for pre-treatment. The information generated in this study can contribute to making the microalgae industry more competitive.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
752
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
32892040
Full Text :
https://doi.org/10.1016/j.scitotenv.2020.141708