Back to Search
Start Over
A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation.
- Source :
-
The Journal of biological chemistry [J Biol Chem] 2020 Nov 13; Vol. 295 (46), pp. 15650-15661. Date of Electronic Publication: 2020 Sep 06. - Publication Year :
- 2020
-
Abstract
- The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N -biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx V <subscript>max</subscript> , accompanied by a decreased influx K <subscript>t</subscript> (4.5-fold) and K <subscript>i</subscript> (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.<br />Competing Interests: Conflict of interest—The authors declare that they have no conflicts of interest with the contents of this article.
- Subjects :
- Amino Acid Sequence
Animals
Biological Transport
Cysteine chemistry
Cysteine metabolism
Folic Acid Deficiency pathology
HeLa Cells
Humans
Kinetics
Malabsorption Syndromes pathology
Methotrexate metabolism
Mutagenesis, Site-Directed
Protein Structure, Tertiary
Proton-Coupled Folate Transporter chemistry
Proton-Coupled Folate Transporter genetics
Proton-Coupled Folate Transporter metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1083-351X
- Volume :
- 295
- Issue :
- 46
- Database :
- MEDLINE
- Journal :
- The Journal of biological chemistry
- Publication Type :
- Academic Journal
- Accession number :
- 32893190
- Full Text :
- https://doi.org/10.1074/jbc.RA120.014757