Back to Search Start Over

Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma.

Authors :
Jain N
Singh S
Laliotis G
Hart A
Muhowski E
Kupcova K
Chrbolkova T
Khashab T
Chowdhury SM
Sircar A
Shirazi F
Singh RK
Alinari L
Zhu J
Havranek O
Tsichlis P
Woyach J
Baiocchi R
Samaniego F
Sehgal L
Source :
Blood advances [Blood Adv] 2020 Sep 22; Vol. 4 (18), pp. 4382-4392.
Publication Year :
2020

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma; 40% of patients relapse after a complete response or are refractory to therapy. To survive, the activated B-cell (ABC) subtype of DLBCL relies upon B-cell receptor signaling, which can be modulated by the activity of Bruton tyrosine kinase (BTK). Targeting BTK with ibrutinib, an inhibitor, provides a therapeutic approach for this subtype of DLBCL. However, non-Hodgkin lymphoma is often resistant to ibrutinib or acquires resistance soon after exposure. We explored how this resistance develops. We generated 3 isogenic ibrutinib-resistant DLBCL cell lines and investigated the deregulated pathways known to be associated with tumorigenic properties. Reduced levels of BTK and enhanced phosphatidylinositol 3-kinase (PI3K)/AKT signaling were hallmarks of these ibrutinib-resistant cells. Upregulation of PI3K-β expression was demonstrated to drive resistance in ibrutinib-resistant cells, and resistance was reversed by the blocking activity of PI3K-β/δ. Treatment with the selective PI3K-β/δ dual inhibitor KA2237 reduced both tumorigenic properties and survival-based PI3K/AKT/mTOR signaling of these ibrutinib-resistant cells. In addition, combining KA2237 with currently available chemotherapeutic agents synergistically inhibited metabolic growth. This study elucidates the compensatory upregulated PI3K/AKT axis that emerges in ibrutinib-resistant cells.<br /> (© 2020 by The American Society of Hematology.)

Details

Language :
English
ISSN :
2473-9537
Volume :
4
Issue :
18
Database :
MEDLINE
Journal :
Blood advances
Publication Type :
Academic Journal
Accession number :
32926124
Full Text :
https://doi.org/10.1182/bloodadvances.2020001685