Back to Search Start Over

Development and validation of a machine learning-based prediction model for near-term in-hospital mortality among patients with COVID-19.

Authors :
Parchure P
Joshi H
Dharmarajan K
Freeman R
Reich DL
Mazumdar M
Timsina P
Kia A
Source :
BMJ supportive & palliative care [BMJ Support Palliat Care] 2020 Sep 22. Date of Electronic Publication: 2020 Sep 22.
Publication Year :
2020
Publisher :
Ahead of Print

Abstract

Objectives: To develop and validate a model for prediction of near-term in-hospital mortality among patients with COVID-19 by application of a machine learning (ML) algorithm on time-series inpatient data from electronic health records.<br />Methods: A cohort comprised of 567 patients with COVID-19 at a large acute care healthcare system between 10 February 2020 and 7 April 2020 observed until either death or discharge. Random forest (RF) model was developed on randomly drawn 70% of the cohort (training set) and its performance was evaluated on the rest of 30% (the test set). The outcome variable was in-hospital mortality within 20-84 hours from the time of prediction. Input features included patients' vital signs, laboratory data and ECG results.<br />Results: Patients had a median age of 60.2 years (IQR 26.2 years); 54.1% were men. In-hospital mortality rate was 17.0% and overall median time to death was 6.5 days (range 1.3-23.0 days). In the test set, the RF classifier yielded a sensitivity of 87.8% (95% CI: 78.2% to 94.3%), specificity of 60.6% (95% CI: 55.2% to 65.8%), accuracy of 65.5% (95% CI: 60.7% to 70.0%), area under the receiver operating characteristic curve of 85.5% (95% CI: 80.8% to 90.2%) and area under the precision recall curve of 64.4% (95% CI: 53.5% to 75.3%).<br />Conclusions: Our ML-based approach can be used to analyse electronic health record data and reliably predict near-term mortality prediction. Using such a model in hospitals could help improve care, thereby better aligning clinical decisions with prognosis in critically ill patients with COVID-19.<br />Competing Interests: Competing interests: None declared.<br /> (© Author(s) (or their employer(s)) 2020. No commercial re-use. See rights and permissions. Published by BMJ.)

Details

Language :
English
ISSN :
2045-4368
Database :
MEDLINE
Journal :
BMJ supportive & palliative care
Publication Type :
Academic Journal
Accession number :
32963059
Full Text :
https://doi.org/10.1136/bmjspcare-2020-002602