Back to Search
Start Over
Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease.
- Source :
-
Frontiers in immunology [Front Immunol] 2020 Sep 02; Vol. 11, pp. 1957. Date of Electronic Publication: 2020 Sep 02 (Print Publication: 2020). - Publication Year :
- 2020
-
Abstract
- Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke and characterized by chronic inflammation, alveolar destruction (emphysema) and bronchiolar obstruction. Ozone is a gaseous constituent of urban air pollution resulting from photochemical interaction of air pollutants such as nitrogen oxide and organic compounds. While acute exposure to ozone induces airway hyperreactivity and neutrophilic inflammation, chronic ozone exposure in mice causes activation of oxidative pathways resulting in cell death and a chronic bronchial inflammation with emphysema, mimicking cigarette smoke-induced COPD. Therefore, the chronic exposure to ozone has become a model for studying COPD. We review recent data on mechanisms of ozone induced lung disease focusing on pathways causing chronic respiratory epithelial cell injury, cell death, alveolar destruction, and tissue remodeling associated with the development of chronic inflammation and AHR. The initial oxidant insult may result from direct effects on the integrity of membranes and organelles of exposed epithelial cells in the airways causing a stress response with the release of mitochondrial reactive oxygen species (ROS), DNA, and proteases. Mitochondrial ROS and mitochondrial DNA activate NLRP3 inflammasome and the DNA sensors cGAS and STING accelerating cell death pathways including caspases with inflammation enhancing alveolar septa destruction, remodeling, and fibrosis. Inhibitors of mitochondrial ROS, NLRP3 inflammasome, DNA sensor, cell death pathways, and IL-1 represent novel therapeutic targets for chronic airways diseases underlined by oxidative stress.<br /> (Copyright © 2020 Wiegman, Li, Ryffel, Togbe and Chung.)
- Subjects :
- Airway Remodeling drug effects
Animals
Anti-Inflammatory Agents therapeutic use
Antioxidants therapeutic use
Cell Death drug effects
Environmental Exposure adverse effects
Humans
Inflammation Mediators metabolism
Lung metabolism
Lung pathology
Pneumonia drug therapy
Pneumonia metabolism
Pneumonia pathology
Pulmonary Disease, Chronic Obstructive drug therapy
Pulmonary Disease, Chronic Obstructive metabolism
Pulmonary Disease, Chronic Obstructive pathology
Pulmonary Emphysema drug therapy
Pulmonary Emphysema metabolism
Pulmonary Emphysema pathology
Reactive Oxygen Species metabolism
Signal Transduction
Air Pollutants adverse effects
Air Pollution adverse effects
Lung drug effects
Oxidative Stress drug effects
Ozone adverse effects
Pneumonia chemically induced
Pulmonary Disease, Chronic Obstructive chemically induced
Pulmonary Emphysema chemically induced
Subjects
Details
- Language :
- English
- ISSN :
- 1664-3224
- Volume :
- 11
- Database :
- MEDLINE
- Journal :
- Frontiers in immunology
- Publication Type :
- Academic Journal
- Accession number :
- 32983127
- Full Text :
- https://doi.org/10.3389/fimmu.2020.01957