Back to Search Start Over

Fixed single-cell RNA sequencing for understanding virus infection and host response.

Authors :
Van Phan H
van Gent M
Drayman N
Basu A
Gack MU
Tay S
Source :
BioRxiv : the preprint server for biology [bioRxiv] 2021 Jan 21. Date of Electronic Publication: 2021 Jan 21.
Publication Year :
2021

Abstract

Single-cell transcriptomic studies that require intracellular protein staining, rare cell sorting, or inactivation of infectious pathogens are severely limited because current high-throughput RNA sequencing methods are incompatible with paraformaldehyde treatment, a common tissue and cell fixation and preservation technique. Here we present FD-seq, a high-throughput method for droplet-based RNA sequencing of paraformaldehyde-fixed, stained and sorted single-cells. We show that FD-seq preserves the mRNA integrity and relative abundances during fixation and subsequent cell retrieval. Furthermore, FD-seq detects a higher number of genes and transcripts than methanol fixation. We applied FD-seq to investigate two important questions in Virology. First, by analyzing a rare population of cells supporting lytic reactivation of the human tumor virus KSHV, we identified TMEM119 as a host factor that mediates viral reactivation. Second, we found that upon infection with the betacoronavirus OC43, which causes the common cold and is a close relative of SARS-CoV-2, pro-inflammatory pathways are primarily upregulated in lowly-infected cells that are exposed to the virus but fail to express high levels of viral genes. FD-seq thus enables integrating phenotypic with transcriptomic information in rare cell populations, and preserving and inactivating pathogenic samples that cannot be handled under regular biosafety measures.<br />Competing Interests: COMPETING INTERESTS The authors declare no competing interests.

Details

Language :
English
ISSN :
2692-8205
Database :
MEDLINE
Journal :
BioRxiv : the preprint server for biology
Publication Type :
Academic Journal
Accession number :
32995793
Full Text :
https://doi.org/10.1101/2020.09.17.302232