Back to Search
Start Over
Fixed single-cell RNA sequencing for understanding virus infection and host response.
- Source :
-
BioRxiv : the preprint server for biology [bioRxiv] 2021 Jan 21. Date of Electronic Publication: 2021 Jan 21. - Publication Year :
- 2021
-
Abstract
- Single-cell transcriptomic studies that require intracellular protein staining, rare cell sorting, or inactivation of infectious pathogens are severely limited because current high-throughput RNA sequencing methods are incompatible with paraformaldehyde treatment, a common tissue and cell fixation and preservation technique. Here we present FD-seq, a high-throughput method for droplet-based RNA sequencing of paraformaldehyde-fixed, stained and sorted single-cells. We show that FD-seq preserves the mRNA integrity and relative abundances during fixation and subsequent cell retrieval. Furthermore, FD-seq detects a higher number of genes and transcripts than methanol fixation. We applied FD-seq to investigate two important questions in Virology. First, by analyzing a rare population of cells supporting lytic reactivation of the human tumor virus KSHV, we identified TMEM119 as a host factor that mediates viral reactivation. Second, we found that upon infection with the betacoronavirus OC43, which causes the common cold and is a close relative of SARS-CoV-2, pro-inflammatory pathways are primarily upregulated in lowly-infected cells that are exposed to the virus but fail to express high levels of viral genes. FD-seq thus enables integrating phenotypic with transcriptomic information in rare cell populations, and preserving and inactivating pathogenic samples that cannot be handled under regular biosafety measures.<br />Competing Interests: COMPETING INTERESTS The authors declare no competing interests.
Details
- Language :
- English
- ISSN :
- 2692-8205
- Database :
- MEDLINE
- Journal :
- BioRxiv : the preprint server for biology
- Publication Type :
- Academic Journal
- Accession number :
- 32995793
- Full Text :
- https://doi.org/10.1101/2020.09.17.302232