Back to Search Start Over

Personalized Sleep Spindle Detection in Whole Night Polysomnography.

Authors :
Scafa S
Fiorillo L
Lucchini M
Roth C
Agostini V
Vancheri A
Faraci FD
Source :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference [Annu Int Conf IEEE Eng Med Biol Soc] 2020 Jul; Vol. 2020, pp. 1047-1050.
Publication Year :
2020

Abstract

The present study proposes a new personalized sleep spindle detection algorithm, suggesting the importance of an individualized approach. We identify an optimal set of features that characterize the spindle and exploit a support vector machine to distinguish between spindle and nonspindle patterns. The algorithm is assessed on the open source DREAMS database, that contains only selected part of the polysomnography, and on whole night polysomnography recordings from the SPASH database. We show that on the former database the personalization can boost sensitivity, from 84.2% to 89.8%, with a slight increase in specificity, from 97.6% to 98.1%. On a whole night polysomnography instead, the algorithm reaches a sensitivity of 98.6% and a specificity of 98.1%, thanks to the personalization approach. Future work will address the integration of the spindle detection algorithm within a sleep scoring automated procedure.

Details

Language :
English
ISSN :
2694-0604
Volume :
2020
Database :
MEDLINE
Journal :
Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Publication Type :
Academic Journal
Accession number :
33018165
Full Text :
https://doi.org/10.1109/EMBC44109.2020.9176136