Back to Search Start Over

Selective inhibition of aldo-keto reductase 1C3: a novel mechanism involved in midostaurin and daunorubicin synergism.

Authors :
Morell A
Novotná E
Milan J
Danielisová P
Büküm N
Wsól V
Source :
Archives of toxicology [Arch Toxicol] 2021 Jan; Vol. 95 (1), pp. 67-78. Date of Electronic Publication: 2020 Oct 06.
Publication Year :
2021

Abstract

Midostaurin is an FMS-like tyrosine kinase 3 receptor (FLT3) inhibitor that provides renewed hope for treating acute myeloid leukaemia (AML). The limited efficacy of this compound as a monotherapy contrasts with that of its synergistic combination with standard cytarabine and daunorubicin (Dau), suggesting a therapeutic benefit that is not driven only by FLT3 inhibition. In an AML context, the activity of the enzyme aldo-keto reductase 1C3 (AKR1C3) is a crucial factor in chemotherapy resistance, as it mediates the intracellular transformation of anthracyclines to less active hydroxy metabolites. Here, we report that midostaurin is a potent inhibitor of Dau inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in a transfected cell model. Likewise, in the FLT3 <superscript>-</superscript> AML cell line KG1a, midostaurin was able to increase the cellular accumulation of Dau and significantly decrease its metabolism by AKR1C3 simultaneously. The combination of those mechanisms increased the nuclear localization of Dau, thus synergizing its cytotoxic effects on KG1a cells. Our results provide new in vitro evidence of how the therapeutic activity of midostaurin could operate beyond targeting the FLT3 receptor.

Details

Language :
English
ISSN :
1432-0738
Volume :
95
Issue :
1
Database :
MEDLINE
Journal :
Archives of toxicology
Publication Type :
Academic Journal
Accession number :
33025066
Full Text :
https://doi.org/10.1007/s00204-020-02884-2