Back to Search Start Over

Structural basis for CDK7 activation by MAT1 and Cyclin H.

Authors :
Peissert S
Schlosser A
Kendel R
Kuper J
Kisker C
Source :
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2020 Oct 27; Vol. 117 (43), pp. 26739-26748. Date of Electronic Publication: 2020 Oct 14.
Publication Year :
2020

Abstract

Cyclin-dependent kinase 7 (CDK7), Cyclin H, and the RING-finger protein MAT1 form the heterotrimeric CDK-activating kinase (CAK) complex which is vital for transcription and cell-cycle control. When associated with the general transcription factor II H (TFIIH) it activates RNA polymerase II by hyperphosphorylation of its C-terminal domain (CTD). In the absence of TFIIH the trimeric complex phosphorylates the T-loop of CDKs that control cell-cycle progression. CAK holds a special position among the CDK branch due to this dual activity and the dependence on two proteins for activation. We solved the structure of the CAK complex from the model organism Chaetomium thermophilum at 2.6-Å resolution. Our structure reveals an intricate network of interactions between CDK7 and its two binding partners MAT1 and Cyclin H, providing a structural basis for the mechanism of CDK7 activation and CAK activity regulation. In vitro activity measurements and functional mutagenesis show that CDK7 activation can occur independent of T-loop phosphorylation and is thus exclusively MAT1-dependent by positioning the CDK7 T-loop in its active conformation.<br />Competing Interests: The authors declare no competing interest.<br /> (Copyright © 2020 the Author(s). Published by PNAS.)

Details

Language :
English
ISSN :
1091-6490
Volume :
117
Issue :
43
Database :
MEDLINE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Publication Type :
Academic Journal
Accession number :
33055219
Full Text :
https://doi.org/10.1073/pnas.2010885117