Back to Search Start Over

Microbial competition reduces metabolic interaction distances to the low µm-range.

Authors :
van Tatenhove-Pel RJ
Rijavec T
Lapanje A
van Swam I
Zwering E
Hernandez-Valdes JA
Kuipers OP
Picioreanu C
Teusink B
Bachmann H
Source :
The ISME journal [ISME J] 2021 Mar; Vol. 15 (3), pp. 688-701. Date of Electronic Publication: 2020 Oct 19.
Publication Year :
2021

Abstract

Metabolic interactions between cells affect microbial community compositions and hence their function in ecosystems. It is well-known that under competition for the exchanged metabolite, concentration gradients constrain the distances over which interactions can occur. However, interaction distances are typically quantified in two-dimensional systems or without accounting for competition or other metabolite-removal, conditions which may not very often match natural ecosystems. We here analyze the impact of cell-to-cell distance on unidirectional cross-feeding in a three-dimensional aqueous system with competition for the exchanged metabolite. Effective interaction distances were computed with a reaction-diffusion model and experimentally verified by growing a synthetic consortium of 1 µm-sized metabolite producer, receiver, and competitor cells in different spatial structures. We show that receivers cannot interact with producers located on average 15 µm away from them, as product concentration gradients flatten close to producer cells. We developed an aggregation protocol and varied the receiver cells' product affinity, to show that within producer-receiver aggregates even low-affinity receiver cells could interact with producers. These results show that competition or other metabolite-removal of a public good in a three-dimensional system reduces metabolic interaction distances to the low µm-range, highlighting the importance of concentration gradients as physical constraint for cellular interactions.

Subjects

Subjects :
Diffusion
Microbiota

Details

Language :
English
ISSN :
1751-7370
Volume :
15
Issue :
3
Database :
MEDLINE
Journal :
The ISME journal
Publication Type :
Academic Journal
Accession number :
33077887
Full Text :
https://doi.org/10.1038/s41396-020-00806-9