Back to Search Start Over

Variations in soil organic carbon content with chronosequence, soil depth and aggregate size under shifting cultivation.

Authors :
Laskar SY
Sileshi GW
Pathak K
Debnath N
Nath AJ
Laskar KY
Singnar P
Das AK
Source :
The Science of the total environment [Sci Total Environ] 2021 Mar 25; Vol. 762, pp. 143114. Date of Electronic Publication: 2020 Oct 21.
Publication Year :
2021

Abstract

Shifting cultivation is a globally important form of agriculture covering over 280 million hectares in the tropics, but it has often been blamed for deforestation and forest degradation. In North East India (NEI) it has been practiced for millennia and it is an important element of the cultural identity of indigenous communities. It is often practiced on slopping lands with fragile soils (mostly Acrisols), which are prone to rapid degradation with cultivation. The shortened fallow cycle as practised currently is ecologically unsustainable and economically not viable. This study aimed to quantify (i) changes in soil bulk density, aggregate stability and compaction in relation to chronosequence and soil depth, (ii) changes in the proportion of macro, meso, and micro aggregates and associated soil organic carbon (SOC) content in relation to soil depth and fallow chronosequence, and (iii) determine the minimum fallow length that achieves SOC stocks comparable with adjacent intact forest land. The proportion of soil macro-aggregates and meso-aggregates significantly varied with land-use and soil depth as well as their interactive effects. Across all soil depths, forest land had the highest proportion of macro-aggregates (75.6%), while the currently cultivated land had the least proportion (51.1%). The SOC contents in macro-aggregates increased with fallow age and decreased with soil depth; the highest (1.95%) being in the top 10 cm soil of 20 years old fallows and the lowest (0.39%) in 21-30 cm depth of 5 years old fallows. Multivariate analysis identified bulk density and porosity as the most important variables to discriminate between land use practices. The analysis provided evidence for significant changes in soil compaction, aggregate stability and SOC content with the transition from undisturbed forest to slash-and-burn cultivation and fallow phases. It is concluded that a minimum of 20 years of fallow period is required to achieve SOC content and C stocks comparable with intact forest land.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2020 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
762
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
33129519
Full Text :
https://doi.org/10.1016/j.scitotenv.2020.143114