Back to Search Start Over

Room-Temperature Manipulation of Magnetization Angle, Achieved with an All-Solid-State Redox Device.

Authors :
Namiki W
Tsuchiya T
Takayanagi M
Higuchi T
Terabe K
Source :
ACS nano [ACS Nano] 2020 Nov 24; Vol. 14 (11), pp. 16065-16072. Date of Electronic Publication: 2020 Nov 02.
Publication Year :
2020

Abstract

An all-solid-state redox device, composed of magnetite (Fe <subscript>3</subscript> O <subscript>4</subscript> ) thin film and Li <superscript>+</superscript> conducting electrolyte thin film, was fabricated for the manipulation of a magnetization angle at room temperature (RT). This is a key technology for the creation of efficient spintronics devices, but has not yet been achieved at RT by other carrier doping methods. Variations in magnetization angle and magnetic stability were precisely tracked through the use of planar Hall measurements at RT. The magnetization angle was reversibly manipulated at 10° by maintaining magnetic stability. Meanwhile, the manipulatable angle reached 56°, although the manipulation became irreversible when the magnetic stability was reduced. This large manipulation of magnetic angle was achieved through tuning of the 3d electron number and modulation of the internal strain in the Fe <subscript>3</subscript> O <subscript>4</subscript> due to the insertion of high-density Li <superscript>+</superscript> (approximately 10 <superscript>21</superscript> cm <superscript>-3</superscript> ). This RT manipulation is applicable to highly integrated spintronics devices due to its simple structure and low electric power consumption.

Details

Language :
English
ISSN :
1936-086X
Volume :
14
Issue :
11
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
33137249
Full Text :
https://doi.org/10.1021/acsnano.0c07906