Back to Search Start Over

Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors.

Authors :
Falbo L
Costanzo V
Source :
BioEssays : news and reviews in molecular, cellular and developmental biology [Bioessays] 2021 Jan; Vol. 43 (1), pp. e2000181. Date of Electronic Publication: 2020 Nov 09.
Publication Year :
2021

Abstract

During early embryonic development in several metazoans, accurate DNA replication is ensured by high number of replication origins. This guarantees rapid genome duplication coordinated with fast cell divisions. In Xenopus laevis embryos this program switches to one with a lower number of origins at a developmental stage known as mid-blastula transition (MBT) when cell cycle length increases and gene transcription starts. Consistent with this regulation, somatic nuclei replicate poorly when transferred to eggs, suggesting the existence of an epigenetic memory suppressing replication assembly origins at all available sites. Recently, it was shown that histone H1 imposes a non-permissive chromatin configuration preventing replication origin assembly on somatic nuclei. This somatic state can be erased by SSRP1, a subunit of the FACT complex. Here, we further develop the hypothesis that this novel form of epigenetic memory might impact on different areas of vertebrate biology going from nuclear reprogramming to cancer development.<br /> (© 2020 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1521-1878
Volume :
43
Issue :
1
Database :
MEDLINE
Journal :
BioEssays : news and reviews in molecular, cellular and developmental biology
Publication Type :
Academic Journal
Accession number :
33165968
Full Text :
https://doi.org/10.1002/bies.202000181