Back to Search
Start Over
A rat epigenetic clock recapitulates phenotypic aging and co-localizes with heterochromatin.
- Source :
-
ELife [Elife] 2020 Nov 12; Vol. 9. Date of Electronic Publication: 2020 Nov 12. - Publication Year :
- 2020
-
Abstract
- Robust biomarkers of aging have been developed from DNA methylation in humans and more recently, in mice. This study aimed to generate a novel epigenetic clock in rats-a model with unique physical, physiological, and biochemical advantages-by incorporating behavioral data, unsupervised machine learning, and network analysis to identify epigenetic signals that not only track with age, but also relates to phenotypic aging. Reduced representation bisulfite sequencing (RRBS) data was used to train an epigenetic age (DNAmAge) measure in Fischer 344 CDF (F344) rats. This measure correlated with age at (r = 0.93) in an independent sample, and related to physical functioning (p=5.9e-3), after adjusting for age and cell counts. DNAmAge was also found to correlate with age in male C57BL/6 mice (r = 0.79), and was decreased in response to caloric restriction. Our signatures driven by CpGs in intergenic regions that showed substantial overlap with H3K9me3, H3K27me3, and E2F1 transcriptional factor binding.<br />Competing Interests: ML, RM, MM, KP, AD, TM, CF, KT, MW, CD, MP, Rd, LF No competing interests declared
- Subjects :
- Aging genetics
Aging physiology
Animals
Biological Clocks genetics
Biomarkers
DNA Methylation genetics
DNA Methylation physiology
Male
Mice, Inbred C57BL
Phenotype
Rats
Rats, Inbred F344
Unsupervised Machine Learning
Aging metabolism
Biological Clocks physiology
Epigenesis, Genetic physiology
Heterochromatin metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2050-084X
- Volume :
- 9
- Database :
- MEDLINE
- Journal :
- ELife
- Publication Type :
- Academic Journal
- Accession number :
- 33179594
- Full Text :
- https://doi.org/10.7554/eLife.59201