Back to Search Start Over

Induction of therapeutic levels of HbF in genome-edited primary β 0 39-thalassaemia haematopoietic stem and progenitor cells.

Authors :
Mingoia M
Caria CA
Ye L
Asunis I
Marongiu MF
Manunza L
Sollaino MC
Wang J
Cabriolu A
Kurita R
Nakamura Y
Cucca F
Kan YW
Marini MG
Moi P
Source :
British journal of haematology [Br J Haematol] 2021 Jan; Vol. 192 (2), pp. 395-404. Date of Electronic Publication: 2020 Nov 20.
Publication Year :
2021

Abstract

Hereditary persistence of fetal haemoglobin (HPFH) is the major modifier of the clinical severity of β-thalassaemia. The homozygous mutation c.-196 C>T in the Aγ-globin (HBG1) promoter, which causes Sardinian δβ <superscript>0</superscript> -thalassaemia, is able to completely rescue the β-major thalassaemia phenotype caused by the β <superscript>0</superscript> 39-thalassaemia mutation, ensuring high levels of fetal haemoglobin synthesis during adulthood. Here, we describe a CRISPR/Cas9 genome-editing approach, combined with the non-homologous end joining (NHEJ) pathway repair, aimed at reproducing the effects of this naturally occurring HPFH mutation in both HBG promoters. After selecting the most efficient guide RNA in K562 cells, we edited the HBG promoters in human umbilical cord blood-derived erythroid progenitor 2 cells (HUDEP-2) and in haematopoietic stem and progenitor cells (HSPCs) from β <superscript>0</superscript> -thalassaemia patients to assess the therapeutic potential of HbF induction. Our results indicate that small deletions targeting the -196-promoter region restore high levels of fetal haemoglobin (HbF) synthesis in all cell types tested. In pools of HSPCs derived from homozygous β <superscript>0</superscript> 39-thalassaemia patients, a 20% editing determined a parallel 20% increase of HbF compared to unedited pools. These results suggest that editing the region of HBG promoters around the -196 position has the potential to induce therapeutic levels of HbF in patients with most types of β-thalassaemia irrespective of the β-globin gene (HBB) mutations.<br /> (© 2020 British Society for Haematology and John Wiley & Sons Ltd.)

Details

Language :
English
ISSN :
1365-2141
Volume :
192
Issue :
2
Database :
MEDLINE
Journal :
British journal of haematology
Publication Type :
Academic Journal
Accession number :
33216968
Full Text :
https://doi.org/10.1111/bjh.17167