Back to Search
Start Over
Ancestral genetic variation in phenotypic plasticity underlies rapid evolutionary changes in resurrected populations of waterfleas.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2020 Dec 22; Vol. 117 (51), pp. 32535-32544. Date of Electronic Publication: 2020 Dec 07. - Publication Year :
- 2020
-
Abstract
- The role of phenotypic plasticity in adaptive evolution has been debated for decades. This is because the strength of natural selection is dependent on the direction and magnitude of phenotypic responses to environmental signals. Therefore, the connection between plasticity and adaptation will depend on the patterns of plasticity harbored by ancestral populations before a change in the environment. Yet few studies have directly assessed ancestral variation in plasticity and tracked phenotypic changes over time. Here we resurrected historic propagules of Daphnia spanning multiple species and lakes in Wisconsin following the invasion and proliferation of a novel predator (spiny waterflea, Bythotrephes longimanus ). This approach revealed extensive genetic variation in predator-induced plasticity in ancestral populations of Daphnia It is unlikely that the standing patterns of plasticity shielded Daphnia from selection to permit long-term coexistence with a novel predator. Instead, this variation in plasticity provided the raw materials for Bythotrephes -mediated selection to drive rapid shifts in Daphnia behavior and life history. Surprisingly, there was little evidence for the evolution of trait plasticity as genetic variation in plasticity was maintained in the face of a novel predator. Such results provide insight into the link between plasticity and adaptation and highlight the importance of quantifying genetic variation in plasticity when evaluating the drivers of evolutionary change in the wild.<br />Competing Interests: The authors declare no competing interest.
- Subjects :
- Adaptation, Biological
Animals
Behavior, Animal
Biological Evolution
Cladocera genetics
Clutch Size
Daphnia genetics
Daphnia physiology
Genetics, Population
Geologic Sediments
Introduced Species
Lakes
Life History Traits
Predatory Behavior
Selection, Genetic
Wisconsin
Adaptation, Physiological genetics
Cladocera physiology
Genetic Variation
Subjects
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 117
- Issue :
- 51
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 33288702
- Full Text :
- https://doi.org/10.1073/pnas.2006581117